We present a search for ultralight axion dark matter coupled to electron spins using a levitated ferromagnetic torsional oscillator (FMTO). This platform directly measures axion-induced torques on a macroscopic spin-polarized body, combining large spin density with strong mechanical isolation to probe magnetic fluctuations below 10 Hz while suppressing gradient-field noise. In a first implementation, the experiment yielded 18000 s of analyzable data at room temperature under high vacuum with optical readout and triple-layer magnetic shielding. A likelihood-based statistical framework, incorporating stochastic fluctuations in the axion-field amplitude, was used to evaluate the data. No excess consistent with an axion-induced pseudo-magnetic field was observed near 2e-14 eV. To account for possible shielding-induced signal attenuation, we quantify its effect and report both the uncorrected (g_aee < 1e-7) and attenuation-corrected (g_aee < 6e-5) 90% CL limits on the axion-electron coupling. Looking ahead, improvements guided by both noise-budget analysis and shielding-attenuation considerations, including optimized levitation geometry, cryogenic operation, and superconducting shielding, are expected to boost sensitivity by multiple orders of magnitude.
Abell 3571 is a nearby, X-ray bright galaxy cluster located in the Shapley Supercluster. Although it appears morphologically relaxed in X-ray images, multiwavelength observations reveal subtle indications of residual dynamical activity, likely associated with past merger events. Using wide-field ($1^{\circ} \times 1^{\circ}$) data from the Einstein Probe Follow-up X-ray Telescope (EP-FXT), we extend measurements of the cluster's properties beyond its $R_{500}$ radius. We detect surface-brightness excesses on both the northern and southern sides, consistent with previous XMM-Newton results. The temperature, pressure, and entropy in the northern excess region are lower than the average values, whereas those on the southern side are slightly higher. However, we find no evidence for cold fronts or shocks. These features can be interpreted as sloshing motions triggered by an off-center minor merger. Our findings suggest that, despite its symmetric appearance, A3571 is still recovering from a minor merger and is currently in a post-merger phase. This work also demonstrates the excellent capability of EP-FXT for probing the outskirts of galaxy clusters.
The Euclid satellite will measure spectroscopic redshifts for tens of millions of emission-line galaxies. In the context of Stage-IV surveys, the 3-dimensional clustering of galaxies plays a key role in providing cosmological constraints. In this paper, we conduct a model comparison for the multipole moments of the galaxy 2-point correlation function (2PCF) in redshift space. We test state-of-the-art models, in particular the effective field theory of large-scale structure (EFT), one based on the velocity difference generating function (VDG$_{\infty}$), and different variants of Lagrangian perturbation theory (LPT) models, such as convolutional LPT (CLPT) and its effective-field-theory extension (CLEFT). We analyse the first three even multipoles of the 2PCF in the Flagship 1 simulation, which consists of four snapshots at $z\in\{0.9,1.2,1.5,1.8\}$. We study both template-fitting and full-shape approaches and find that with the template-fitting approach, only the VDG$_{\infty}$ model is able to reach a minimum fitting scale of $s_{\rm min}=20\,h^{-1}\,{\rm Mpc}$ at $z=0.9$ without biasing the recovered parameters. Indeed, the EFT model becomes inaccurate already at $s_{\rm min}=30\,h^{-1}\,{\rm Mpc}$. Conversely, in the full-shape analysis, the CLEFT and VDG$_{\infty}$ models perform similarly well, but only the CLEFT model can reach $s_{\rm min}=20\,h^{-1}\,{\rm Mpc}$ while the VDG$_{\infty}$ model is unbiased down to $s_{\rm min}=25\,h^{-1}\,{\rm Mpc}$ at the lowest redshift. Overall, in order to achieve the accuracy required by Euclid, non-perturbative modelling such as in the VDG$_{\infty}$ or CLEFT models should be considered. At $z=1.8$, the CLPT model is sufficient to describe the data with high figure of merit. This comparison selects baseline models that perform best in ideal conditions and sets the stage for an optimal analysis of Euclid data in configuration space.
this https URL . This review summarizes key discoveries and ways forward discussed at the Lorentz Center Workshop, "Synergistic ALMA+JWST View of the Early Universe" (Dec. 2024). 9 pages, 5 figures